

Differential Lock Valve

Series MT..DVV (for 4 motors)

• robust and reliable

· Agricultural equipment

- energy-optimised over the whole flow range
- simple control
- · compact design offers space-saving installation
- reliable, uniform motion of the wheel-drives being controlled

1 Description

The differential lock valve consists essentially of three bidirectional flow dividers (dividing and combining) and a directional valve for optionally bypassing the flow dividers. It is intended for use in either open- or closed-loop hydrostatic drives with parallel-connected hydraulic motors. When the lock valve is switched OFF, the inlet flow can divide itself among the motors in any required manner. When the lock valve is switched ON, however, the inlet flow is divided into four pressure compensated portions in accordance with the division ratio of the lock valve. The motors are thus driven at fixed speeds, regardless of their respective loads. This arrangement prevents any hydraulic wheel motor from spinning in conditions of poor traction. Three balancing orifices can optionally be arranged between the outlets A, B, C and D. These allow some redistribution of flow and prevent unwanted torque build-up between wheels in these circumstances, and when turning.

The differential lock valves can be supplied with either hydraulic, or electrohydraulic, actuation.

1.1 Application examples

- Construction equipment
- Lifting platforms

2 Symbols

2.1 Hydraulic actuated

2.2 Electrohydraulic actuated

3 Technical data

Hydraulical characteristics	Unit	Description, value								
		Size 08	Size 16							
Nominal flow rate Q _{max}	l/min	100	250							
Flow range ^{1) 2)}	l/min	25, 50, 75, 100	120, 160, 200, 250							
Operating pressure p _{max}	bar	420								
Pilot pressure p _{p min} p _{p max.}	bar	10 30								
Viscosity range	mm²/s	10 300								
Max. admissible level of contamination of the hydraulic fluid		ISO 4406 code 20/18/15, achievable with a filter rating of $\beta_{10} \ge 75$								
Fluid temperature range	°C	-20 +80								
Division ratio (for others, contact Bucher Hydraulics)		1:1:1								
Fluids		HL/HLP mineral oils DIN 51524; other fluids consult Bucher Hydraulics								
Electrical characteristics (type of actuation: EH)	Unit	Description, value								
Voltage	Volt DC	12 or 24								
Power consumption	W	18								
Nitrile seals		NBR								
Duty cycle		100% ED								
Ambient temperature	°C	max. +60								
Coil temperature	°C	max. +180 (insulation c	lass H)							
Enclosure protection DIN 40050		Deutsch Stecker DT04 AMP Junior Timer (2-pe	-2P-EP IP67 blig) IP65							
Electrical connection		Deutsch plug, DT04-2F AMP Junior Timer plug	P-EP04 connector (2-pole)							

1) State the application's effective nominal flow when ordering.

2) Observe minimum flow rate in accordance with section 4.1.

4 Performance graphs

Measured with viscosity 35 mm²/s.

4.1 Flow resistance

4.1.1 Dividing function switched OFF

(in relation to the input Q_{zu} volume flow rate)

4.1.2 Dividing function switched ON

(in relation to the flow range)

4.2 Division accuracy

Percentage of the applicable flow range without a balancing orifice between A and B (hole plugged).

BUCHER hydraulics

5 Dimensions

5.1 MT08DVV...-*H-0*** (hydraulic actuated)

1 4x Mounting thread M10 - 20mm deep

5.2 MT08DVV...-EH-0T... (elektrohydraulic actuated)

1 4x mounting thread M10 - 20mm deep

5.3 MT16DVV...-*H-0*** (hydraulic actuated)

5.4 MT16DVV...-*EH-0T... (elektrohydraulic actuated)

1

clearance holes for M8 mounting cap screws to DIN 912

5.5 Connection size

MT08	BDVV	MT16DVV							
Port	Port threads	Port	Port threads						
Р	G ¾"	Р	M33 x 2 and SAE 1½" (3000 PSI) $^{1)}$						
A, B, C, D, SP	G ½"	A, B, C, D	M27 x 2 and SAE 1" (3000 PSI) ¹⁾						
Т, Х	G ¼"	T, X, SP	M12 x 1,5						

1) SAE flanges see data sheet 100-P-000049.

6 Models

6.1 Sockets

7 Ordering code

	М	т 0	8	D	۷	V	1	0	1	0	1	0	0	2	5	-	Ε	Η	-	-	Г	1	2	/	*	*	D1 =	2)
																											D2 =	
Series: = I	МΤΙ	DV																										
Nom. size : $= ($	08 00	der 16	5																									
4-way differentia	l locł	(valv	e:		= \	V																						
Division ratio, A	+Bt	o C+[) :																									
		1:	1	=	10		、																					
		1:	1,5	=	15 e	etc.)]																				
Division ratio A to	o B:	1	4		10																							
		1	15	_	10 15 c	to 1)																					
		1.	1,5	_	156	10.	/																					
Division ratio C to	o D:																											
		1	1	=	10																							
		1	1,5	=	15 e	etc.	1)																					
Control flow rang z. pe	je: B. 20 er sec	5 l/mir ction.3	ו 3	=	025																							
Type of actuation	n: hyd ohyd	Iraulio raulic	;	; = 	*H EH																							
Design stage:			0	- 9	(ir	nse	rt by	/ Bu	iche	er H	ydra	aulic	s)															
Plug connector: AMP Junior T Deutsch plug	Timei DT(r)4-2P	-EP	04	= , = -	J T																						
Coil voltage:			D	C 12	2 Vo	lt						= '	12															
g			D	C 24	4 Vo	lt						= 2	24															
			op	bera	ting	mo	de	۴H				= *	**															
Option (see secti	ion 7	. 1):	wi	ith n	nake	e-up	va	lve				= ()1															
			WI	in a	nti-s	sno	CK V	aive	es			= (J2															

1) With unequal division:

Between A+B to C+D, the larger flow goes to C+D, Between A and B, the larger flow goes to B,

Between C and D, the larger flow goes to D,

2) Size of balancing orifices must be plainly stated (see also sect. 2) e.g. 0.6 / 0.8 / 1.0 ,

e.g. if balancing orifice D1 is to be 0.8 mm, then D1 = 08 if balancing orifice D2 is to be 1.0 mm, then D2 = 10

7.1 Options

In addition to the standard versions, differential-lock valves can also be equipped with numerous auxiliary functions and combined in customer-specific manifold blocks. In these cases, technical datas and performance graphs may differ from standard.

7.1.1 Examples

7.1.1.1 MT..DVV.....-EH-0T../01 With make-up valve

- /01 = with make-up valve
- /02 = with anti-shock valves (pressure-relief+make-up valves)

7.1.1.2 MT..DVV.....-EH-0T../02 With anti-shock valves (pressure-relief+make-up valves)

8 Application example

8.1 4-wheel drive with the same flow rates at all 4 wheel motors.

BUCHER hydraulics

9 Accessories

9.1 Pipe flanges - high pressure type (thread flange)

- Max. operating pressure 420 bar

- Flange size SAE J518 code 61 / ISO 6162-1

Threaded pipe flanges are spot-faced for DIN 2353 pipe fittings Material: ST37 / for Viton seals, contact Bucher Hydraulics GmbH

Ordering- number	Ordering code	Size	DØ	E	F	Н	L	R	Х	Y	Viton seal 90 Shore A	Retainin DIN91	aining screws N912-12.9 / [Nm]		
100037020	RF 03-R11	G 1"	25	20	34	13	70	29	26,2	52,4	32,99x2,62	M10x35	60		
100037030	RF 04-R12	G 1¼"	32	22	38	14	80	36	30,2	58,6	40,86x3,53	M10x40	60		

Other pipe flanges on request.

10 Installation

Horizontal mounting is recommended. Do not bolt the valve body onto an uneven mounting surface.

11 Fluid

Differential lock valves require fluid with a minimum cleanliness level of ISO 4406 code 0/18/15.

We recommend the use of fluids that contain anti-wear additives for mixed-friction operating conditions. Fluids without appropriate additives can reduce the service life of pumps and motors.

The user is responsible for maintaining, and regularly checking the fluid quality.

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

 $\ensuremath{\mathbb{C}}$ 2024 by Bucher Hydraulics GmbH, D-79771 Klettgau

All rights reserved.

Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.

Classification: 430.310.336.347.000